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MatheMatical Psychology
Trisha Van Zandt and James T. Townsend

Mathematical psychology is not, per se, a distinct 
branch of psychology. Indeed, mathematical psy-
chologists can be found in any area of psychology. 
Rather, mathematical psychology characterizes the 
approach that mathematical psychologists take in 
their substantive domains. Mathematical psycholo-
gists are concerned primarily with developing theo-
ries and models of behavior that permit quantitative 
prediction of behavioral change under varying 
experimental conditions. There are as many mathe-
matical approaches within psychology as there are 
substantive psychological domains. As with most 
theorists of any variety, the mathematical psycholo-
gist will typically start by considering the psycholog-
ical phenomena and underlying structures or 
processes that she wishes to model.

A mathematical model or theory (and we do not 
distinguish between them here) is a set of mathemati-
cal structures, including a set of linkage statements. 
These statements relate variables, equations, and so on 
with components of the psychological process of inter-
est and possibly also aspects of the stimuli or environ-
ment. Regardless of the domain, then, the first step in a 
mathematical approach is to quantify the variables, 
both independent and dependent, measured to study a 
psychological process. Quantification permits variables 
to be represented as parameters in a mathematical 
equation or statistical expression, the goal and defining 
feature of the mathematical psychology enterprise.

Mathematical psychologists, then, construct math-
ematical and statistical models of the processes they 

study. Some domains, such as vision, learning and 
memory, and judgment and decision making, which 
frequently measure easily quantifiable performance 
variables like accuracy and response time, exhibit a 
greater penetration of mathematical reasoning and a 
higher proportion of mathematical psychologists than 
other domains. Processes such as the behavior of indi-
vidual neurons, information flow through visual path-
ways, evidence accumulation in decision making, and 
language production or development have all been 
subjected to a great deal of mathematical modeling. 
However, even problems like the dynamics of mental 
illness, problems falling in the domains of social or 
clinical psychology, have benefited from a mathemati-
cal modeling approach (e.g., see the special issue on 
modeling in clinical science in the Journal of Mathe-
matical Psychology [Townsend & Neufeld, 2010]).

The power of the mathematical approach arises 
when unrealized implications of particular model 
structures become obvious after the mathematical 
representation of the model has been written down. 
By contrast, although verbal models might possess 
logical structure, the inability to interpret concepts 
in a mathematical fashion means that we cannot 
derive their logical implications. The ability to make 
such derivations for mathematical representations 
leads to better testability of theories, improved 
experimental designs targeting specific model pre-
dictions, and better data analyses—such analyses 
frequently being rooted in the statistical properties 
of the model variables.
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Mathematical modeling is the foundation of 
many of the physical sciences. In comparison to 
these, psychology is often described as a “young” 
science; as Laming (1973) described several decades 
ago, psychologists are still often focused on the 
questions of what is happening rather than why it is 
happening. Mathematical psychologists, pointing to 
the role that mathematics has played in the advance-
ment of the physical sciences, have argued that 
advancement in psychology (and other social sci-
ences) will depend on the extent to which mathe-
matical theorizing is applied to psychological issues. 
A testament to this argument is the fact that 
although not all important psychological models are 
mathematical, a great many of them are.

Psychology differs from a physical science in 
more than its age, and the use of mathematical mod-
els will not, on its own, carry psychology forward. 
First, the systems studied by psychologists are far 
more complex than comparable systems in the phys-
ical sciences; and second, relationships between psy-
chological variables are obscured by intrinsic 
variability in these complex systems. Thus, progress 
in psychology is tied to progress in statistics as well 
as technological developments that improve our 
ability to measure behavior. Even the best mathe-
matical tools may not improve our understanding of 
some quirk of human behavior if we are unable to 
measure that behavior or discriminate between 
changes in that behavior and random fluctuations—
fluctuations in either our measurements or the cog-
nitive system we are studying.

The remainder of this chapter consists of three 
sections. The first outlines the history of mathemati-
cal psychology. The second describes its influence in 
modern experimental psychology (i.e., all those 
empirically driven and nonapplied fields of psycho-
logical study). The third discusses some ongoing 
issues in the field.

History

Foundations
Mathematical psychology traces its roots to before 
the beginning of experimental psychology, the latter 
usually dated from the 1879 establishment of Wilhelm 
Wundt’s (1832–1920) laboratory in Leipzig,  

Germany. Eighteenth-century astronomers were 
well aware of the “personal equation” that character-
ized variations in observers’ times to estimate when 
celestial objects moved past wires on a grid. These 
estimates were made with the assistance of a metro-
nome. Thus, the estimates depended on the time the 
astronomer needed to refocus attention from the 
visual to the auditory modality. Clearly, the reliabil-
ity of astronomical measurements were therefore 
heavily dependent on the degree to which observers 
differed from each other or, indeed, from one obser-
vation to the next.

Many astronomers were thus naturally con-
cerned about precisely measuring the personal equa-
tion so that equipment could be appropriately 
recalibrated for different observers. Astronomer  
and mathematician Friedrich Bessel (1784–1846),  
however, was further interested in why such timing 
issues arose. He formulated a hypothesis that a sec-
ond stimulus (whether the auditory click of the met-
ronome or visual movement of the star) produced a 
disturbance in the perceptual system already pro-
cessing the first stimulus (the visual movement of 
the star or the auditory click of the metronome; 
Duncombe, 1945). This was perhaps the first for-
malization of what was later to be known as the psy-
chological refractory period (Rabbitt, 1969) or the 
doctrine of prior entry (Shore & Spence, 2005).

Psychophysics. Although the interesting question 
of the personal equation focused on the speed with 
which people can perform a task, a different histori-
cal branch began with how frequently people make 
different kinds of responses. Physiologist Ernst 
Weber (1795–1878) asked people to make yes–no 
judgments about whether the perceived weights of 
two objects were different. Holding the mass of the 
first object constant, he gradually increased the mass 
of the second object until people said “yes” (“differ-
ent”). He was then able to define the just noticeable 
difference, the smallest increase in weight ΔI that 
a person could detect, and found that it was not a 
constant but instead a function of the weight I of the 
first object, or

I kI= .
 (1)

Weber found that the value of k, which deter-
mined the just noticeable difference, was a constant 
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for most values of I, establishing what we now refer 
to as Weber’s law. This law holds for a wide range of 
intensities I and across different stimulus modalities.

Gustav Theodor Fechner (1801–1887), founder 
of the field of psychophysics and the first true math-
ematical psychologist, was inspired by Weber’s work 
(Fechner, 1860/1889). Although trained as a physi-
cist, Fechner yearned to solve one of philosophy’s 
central and longstanding puzzles, namely, the rela-
tionship of the mind to the outside world and the 
physiological body itself. This giant of philosophical 
enigmas is known as the mind–body problem, which 
continues even now to attract attention from philos-
ophers and cognitive scientists. Fechner tried to 
solve the mind–body problem by establishing a con-
nection, via an equation, between events in the 
physical world and the psychological experience 
they evoked. In modern mathematical psychology, 
this problem is one of foundational measurement: 
How can psychological experience be quantified and 
related to physical intensity? Although Weber’s work 
proposed a relationship between physical intensity 
and a person’s report of their experience, Fechner 
sought a lawful and mathematical relationship 
between physical intensity and the experience itself.

Fechner (1860/1889) had the clever idea of 
employing Weber’s law by making the assumption 
that the psychological experience of a just noticeable 
difference is the same for all values of I. That is, if 
the change in the psychological effect ΔS = c is equal 
to the same constant c for all just noticeable differ-
ences ΔI, then





S

I

c

kI
= , (2)

or, in the limit,

dS
c

kI
dI= . (3)

Applying the rules of calculus to solve this differen-
tial equation leads to the expression we now call 
Fechner’s law: Psychological effects S are a logarith-
mic function of physical intensity I, or

S K I= log , (4)

for some constant K. Perhaps because of the slow 
decaying links with philosophy, no one thought at 
the time of experimentally testing the logarithm 

function prediction of Fechner’s law. It was not until 
much later that Stevens (1957, 1961) tried and 
tested other formulas for the relation of sensation to 
stimulation.

Mental chronometry. While Weber and Fechner 
were laying the foundations of psychological 
measurement and psychophysics, Hermann von 
Helmholtz (1821–1894) was busy measuring the 
speed of nerve conduction in a frog’s leg (Helmholtz, 
1850). The realization that neural events take mea-
sureable time spurred F. C. Donders (1818–1889) 
to develop a system for mental chronometry, the 
measurement of the time required to perform cog-
nitive tasks (Donders, 1868/1969). Donders asked 
people to perform three tasks involving two lights. 
Each task required three different cognitive compo-
nents. We now refer to these tasks as simple reactions 
(respond when any light is perceived), go–no go 
reactions (respond when one specific light is per-
ceived), and choice reactions (respond one way when 
one light is perceived, and a different way when the 
other light is perceived).

The cognitive components involved are percep-
tion, stimulus discrimination, and response selec-
tion. For simple reactions, only perception is 
required; for go–no go reactions, perception and 
stimulus discrimination are required; for choice 
reactions, perception, stimulus discrimination and 
response selection are required.

Donders (1868/1969) measured the response 
times for each task and then estimated the duration 
of the stimulus discrimination and response selec-
tion components by subtraction. The difference 
between simple reaction and go–no go reaction 
times gave an estimate of stimulus discrimination 
time. The difference between go–no go reaction and 
choice reaction times gave an estimate of response 
selection time. Donders’s method of subtraction was 
the foundation of the idea, now fundamental in cog-
nitive psychology, that differences in response time 
provide information about cognitive architecture—
how the brain structures tasks to achieve different 
levels of performance. It has been used in a variety 
of experimental paradigms over the past 150 years 
and set the stage for such techniques of analysis as 
Sternberg’s (1969) additive factors method.
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Sternberg’s (1969) approach proposed to deter-
mine whether two subprocesses involved in a psy-
chological task were arranged in a strict series with 
one starting and finishing before the other (a serial 
process). Subsequent mathematical work extended 
the additive factors method in such a way that a very 
large class of potential mental architectures (includ-
ing parallel processing in which task subprocesses 
are executed simultaneously) could also be directly 
tested (Schweickert, 1978; Schweickert & 
Townsend, 1989; Townsend, 1984).

Psychometrics. Experimental psychology took a 
sharp turn in 1914 with the publication of a land-
mark book by John B. Watson (1878–1958). This 
book heralded the dominance of the psychological 
school of behaviorism, which holds that behavior 
can be explained without reference to mental events. 
The school of behaviorism was beneficial to psychol-
ogy by helping the nascent field break away from its 
sometimes murky philosophical roots. However, it 
relegated Fechner’s (1860/1889) psychological mea-
surement and Donders’s (1868/1969) mental chro-
nometry to the realm of pseudoscience and inhibited 
developments in the study of cognition for several 
decades. This did not entirely stop the growth 
of mathematical psychology as it was applied to 
behavior, however. In fact, one of the later so-called 
neobehaviorists, Clark Leonard Hull (1884–1952), 
used mathematics in his mission to form a general 
theory of learning and motivation (see Hull, 1952).

Applied concerns also required the development 
of psychologically motivated quantitative methods 
to solve problems in human engineering and mea-
surement. The desire of colleges and the military to 
measure human intelligence and aptitude led to the 
rise of standardized testing and psychometrics just 
as the behaviorism movement was getting off the 
ground. Using tests to assess knowledge and apti-
tude has a history that extends back to ancient 
China (Elman, 2000). At the turn of the 20th cen-
tury, the first intelligence tests were published  
(e.g., Binet, 1905/1916), and the College Entrance 
Examination Board (now the College Board) was 
founded, providing colleges and universities with a 
way to test fitness of applicants to complete their 
curriculum. Similarly, the military has always been 

concerned about fitting soldiers to jobs for which 
they are well-suited, and the demand for large-scale 
answers to problems of psychological measurement 
began at the beginning of World War I.

L. L. Thurstone (1887–1955), founder and first 
president of the Psychometric Society, made signifi-
cant contributions to the theory of measurement 
and psychophysics. His work was concentrated  
on the problem of quantifying human ability— 
intelligence, primarily—and he worked closely  
with the Army and the Institute for Government 
Research writing civil service exams (Thurstone, 
1952). His Law of Comparative Judgment (Thurstone, 
1927) was the first work to establish the concept of 
a psychological continuum, a range of quantifiable 
psychological experience that could be used as the 
basis for psychophysical judgments. He later 
expanded this continuum to attitudes and ability, 
and it became the forerunner to the Bradley–Terry–
Luce and Rasch models of psychometrics as well as 
signal-detection theory.

the rise of Modern Mathematical 
Psychology
Modern mathematical psychology stems from three 
innovations in psychology and engineering: the first 
application of signal-detection theory to human per-
formance (Swets, Tanner, & Birdsall, 1961), the 
application of information theory to encoding and 
decoding messages in the human cognitive system 
(Attneave, 1954), and two milestone publications in 
mathematical learning theory (Bush & Mosteller, 
1955; Estes, 1950). Together these three areas of 
research laid the groundwork for the idea that 
remains central in cognitive psychology in the 21st 
century: The human being, as she makes her way 
through the world, operates like an information-
processing device. Information from the external 
world is encoded by sensory transducers; this infor-
mation is operated upon by various brain mecha-
nisms to produce her perception of the world and to 
allow her to select appropriate responses to the 
world; finally, if necessary, she can activate her 
response effectors to manipulate the state of her 
external world.

Signal-detection theory, born from the problems 
of communications engineers during World War II, 
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borrows its fundamentals from statistical decision 
theory. An observer is presented with a low-amplitude 
signal tone in a burst of white noise and must deter-
mine whether the signal is present. This stimulus 
gives rise to some sensory effect (perceived inten-
sity), which varies randomly each time it is presented. 
This randomness is attributed to the inherent vari-
ability of sensory transduction or noise in the cogni-
tive channel. Randomness means that signals (in 
which a tone is present) may sometimes have the 
same sensory effect as noise alone. Signal or noise 
decisions are made by evaluating either the likeli-
hood that a particular sensory experience resulted 
from a signal or noise stimulus, or by evaluating the 
magnitude of the sensory effect relative to some 
minimum criterion required to call a stimulus a sig-
nal. The important contribution of signal-detection 
theory, which now forms the heart of many modern 
models of cognition, is that it provided a method for 
separating effects of response bias (how the likeli-
hood or magnitude of experience is evaluated) from 
the discriminability of the stimulus.

Information theory also derived from work in 
statistics and communications engineering (see, e.g., 
Shannon & Weaver, 1949). It is a way of quantifying 
the information or uncertainty of a signal from the 
probabilities associated with each possible stimulus 
for that signal. Communications engineers were 
concerned with how signals could be compressed 
and how much information could be transmitted 
over a noisy communications channel; the analogy 
to the human decision maker was immediately obvi-
ous to psychologists (e.g., Attneave, 1954; Garner, 
1974). Information theory not only could be used to 
quantify sets of stimuli and collections of responses 
but also could be used to measure how much infor-
mation the cognitive system could transmit.

Information theory contributed to the “intelli-
gent machine revolution,” represented best perhaps 
by Wiener’s influential 1948 book Cybernetics; or, 
Control and Communication in the Animal and the 
Machine. Cybernetics, the science of feedback  
control systems applied to biological systems, influ-
enced our treatment of the human as an information 
processor but had its greatest impact on research in 
artificial intelligence. It also encouraged the applica-
tion of general systems theory (and nonlinear 

dynamics) in cognitive modeling (see the section 
Neural Modeling).

From information theory came a tremendous 
amount of research exploring the processing limita-
tions of humans, and this led to one of the first links 
between the dependent variables of response fre-
quency and response time. The Hick-Hyman law of 
response time states that response time RT is a linear 
function of the amount of information H (measured 
in bits) transmitted through the system, or

RT a bH= + , (5)

where b is called the channel capacity of the human 
(Hick, 1952; Hyman, 1953). Later, Miller (1956) 
reviewed the channel capacity literature that encom-
passed a number of different tasks. In his classic 
paper “The Magic Number Seven Plus or Minus 
Two: Some Limits on Our Capacity for Processing 
Information,” he argued that people were limited in 
their ability to process and transmit information to 
approximately 2.5 bits.

An outcome of Miller’s (1956) work was the real-
ization that information contained in a set of items 
might be less important than the size of the set itself. 
This, together with other work demonstrating that 
information theory did not provide a useful explana-
tion for how information was processed (e.g., Leon-
ard, 1959), arguably led to a decline in the use of 
information theory in cognitive modeling (see also 
Luce, 2003). However, it still remains a useful way 
to quantify psychological and behavioral concepts 
(e.g., Strange, Duggins, Penny, Dolan, & Friston, 
2005). In addition, the general concept that humans 
can be studied as perceptual, cognitive, and action 
systems through which information flows led to the 
rise of the “information processing approach,” 
which continues to dominate much of experimental 
psychology in the 21st century.

Signal detection and information theory both 
suggested ways that stimuli could be quantified. 
Furthermore, signal-detection theory suggested 
what a perceptual representation of stimuli might 
look like, pointing the way to a cognitive theory of 
stimulus discrimination. At this same time, new the-
ories of learning were presented (Bush & Mosteller, 
1955; Estes, 1950, 1957). Bush and Mosteller’s (1955) 
work derived from the prevailing behavioristic view 
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of animal learning. Their theories focused solely on 
changes in the observer’s response probability over 
time. For example, Bush and Mosteller’s approach 
employed a simple difference equation for learning. 
Consider a task in which an animal must learn to 
make one particular response. Letting q(n) be the 
probability of an error on trial n, the simplest Bush 
and Mosteller model specified that q(n) = aq(n − 1), 
where a is greater than 0 and less than 1. This means 
that the likelihood of an error decreases over 
trials—learning.

Consistent with behavioristic dogma, Bush and 
Mosteller’s (1955) learning models did not speculate 
about the internal mental states of the observer. 
However, Estes’s (1950, 1957) stimulus sampling 
theory, like signal-detection theory, diverged from 
this philosophy by representing stimuli as being 
composed of smaller “elements” that could be sam-
pled and possibly conditioned (i.e., learned) by the 
observer (e.g., Atkinson & Estes, 1963). In contrast 
to Bush and Mosteller’s approach, Estes’s models 
made a large impact not only on research in learn-
ing, but also in memory. Many modern memory 
models have taken advantage of his conception of 
stimulus elements and the idea that stimulus ele-
ments become associated to various components of 
a task structure (e.g., Shiffrin & Steyvers, 1997).

The following decades saw the publication of 
several books that established mathematical psy-
chology as a formal discipline. The first were the 
three volumes of the Handbook of Mathematical Psy-
chology (Luce, Bush, & Galanter, 1963–1965a), fol-
lowed by two volumes of Readings in Mathematical 
Psychology (Luce, Bush, & Galanter, 1963–1965b). 
These volumes were targeted primarily toward 
researchers active in the field. Atkinson, Bower, and 
Crothers published the more elementary An Intro-
duction to Mathematical Learning Theory in 1966, but 
it was not until the 1970 publication of Coombs, 
Dawes, and Tversky’s Mathematical Psychology that 
there existed an introductory textbook suitable for 
undergraduates. This text covered a broad set of 
topics, including signal detection, information, and 
learning theory as well as judgment and decisions, 
psychological measurement, and game theory. In 
1973, Laming published a more advanced Mathe-
matical Psychology text, but this text focused on 

models that could predict response times, a 
neglected domain in texts up until that time.

the Journal of Mathematical Psychology 
and the society for Mathematical 
Psychology
By 1960, there were at least a large handful of truly 
mathematical psychologists. As Estes (2002) 
described, some of these psychologists regularly par-
ticipated in what are now called the Social Science 
Research Council’s Knowledge Institutions. These 
particular institutions were held at Stanford Univer-
sity for the purposes of training social scientists in 
mathematical and statistical techniques. In 1963, the 
idea was proposed to begin a new journal devoted to 
the publication of theoretical, mathematical articles 
in psychology; in 1964, the first issue of the Journal 
of Mathematical Psychology was published. Richard 
C. Atkinson, Robert R. Bush, Clyde H. Coombs, 
William K. Estes, R. Duncan Luce, William J. 
McGill, and George A. Miller served on the journal’s 
first editorial board.

Several years later, mathematical psychologists 
began meeting informally in the summer to give 
papers and symposia. After a number of years, in 
1976, the journal’s editorial board organized the 
Society for Mathematical Psychology. Bylaws were 
drafted by Estes and Luce, together with William H. 
Batchelder and Bert F. Green; in 1977, the Society 
was formally incorporated. The Society has now, for 
more than 40 years, hosted an annual meeting each 
summer at which students and researchers from a 
wide range of disciplines have presented papers, 
posters, and symposia highlighting the application 
of mathematical and statistical models to problems 
in psychology, cognitive science, neuroscience, and 
cognitive engineering.

By the time the Society was getting under way in 
the United States, a similar organization had already 
been formed in Europe called the European Mathe-
matical Psychology Group. The Group, although 
never formally incorporated, has met every year 
since it was founded by Jean-Claude Falmagne in 
1971. The British Psychological Association began 
publishing the British Journal of Mathematical and 
Statistical Psychology in 1965, which was an offshoot 
of the British Journal of Psychology: Statistical Section 
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(1947–1952) and later the British Journal of Statisti-
cal Psychology (1953–1964). The papers appearing 
in the British Journal are from researchers in both 
psychometrics and mathematical psychology, and so 
it is in these pages that we can see most strongly the 
links between these two branches of quantitative 
psychology.

Modern MatHeMatical PsycHology

If one sampled a mathematical psychologist at ran-
dom, one would find that she could be roughly cate-
gorized along four (nonorthogonal) dimensions. 
First of all, we might determine whether her model-
ing is strictly axiomatic or more loosely formulated. 
Next, we could determine whether she takes primar-
ily a deterministic or a stochastic modeling 
approach. Then, we could ask whether her approach 
is primarily analytic or computational. Finally, her 
work may be primarily empirical or theoretical.

At the risk of oversimplification, an axiomatic 
approach is one in which the modeler writes down 
some primary definitions and then statements  
(axioms) about what should be true. For example, 
the modeler may specify mathematical definitions 
on the basis of the desire to represent situations in 
which people are presented with stimulus pairs and 
that their task is to choose the stimulus in the pair 
with the greatest perceived magnitude. An axiom 
might then be that, when presented with two tones 
(the stimulus pair), people should be able to identify 
correctly the one that is louder with probability 
greater than or equal to 0.5. These axioms, then, 
permit the association of mathematical variables and 
formulas to psychological concepts. Given a set of 
axioms, the modeler can go on to make logical infer-
ences about what people should do under different 
conditions.

Axiomatic theorems do not usually address 
issues of intrinsic randomness—they tend to be 
deterministic. Given fixed-model parameters and a 
fixed stimulus, the model produces one and only 
one result. A stochastic model, by contrast, might 
produce very different results even when the param-
eters and the stimulus are fixed. Models of cognitive 
processing are frequently stochastic. Sequential sam-
pling models, such as those reviewed by Ratcliff and 

Smith (2004), are a perfect example of the stochastic 
approach. Predictions about behavior are often 
focused on how dependent variables are distributed, 
and how the parameters of those distributions 
change with changes in experimental procedures.

An analytical approach is one in which dependent 
variables Y can be written as analytical expression 
involving independent variables X, or Y = g(X) for a 
function g that does not require any messy numerical 
calculations (like taking a limit or integrating). The 
general linear model employed in regression is one 
example of an analytic expression. The expressions 
providing finishing time distributions for serial and 
parallel processing systems (e.g., Townsend, 1972, 
1976; also see the section Model Testing, Evaluation, 
and Comparisons) are other examples.

In contrast, a nonanalytic expression does not 
allow one to write Y = g(X) and generate predictions 
for Y algebraically; instead, a computer must be used 
to simulate the model or solve for Y. Often, the more 
complex the issue being addressed, the more likely 
it is that a computational approach will be neces-
sary. Techniques for model comparison (Pitt, 
Myung, & Zhang, 2002), Bayesian model fitting 
(Lee, 2008), and models devoted to particularly 
intractable problems like text comprehension or lan-
guage processing (e.g., Dennis & Kintsch, 2007) 
often require a computational approach.

Finally, many mathematical psychologists are 
also empiricists: They collect data to test their mod-
els. However, there is a subset of mathematical psy-
chologists who rarely or never collect data; their 
work is primarily theoretical. When theoretical work 
suggests a certain empirical approach, they either 
collaborate with empiricists or, if it is available, they 
reanalyze already published data. These mathemati-
cal psychologists make theoretical contributions that 
suggest new mathematical representations of differ-
ent psychological problems, or methodological con-
tributions that provide new techniques of analysis. 
They are rather akin to theoretical physicists, some 
of whom had remarkable insights about the nature of 
things but were notoriously inept in the laboratory.

Foundational Measurement
Work in foundational measurement has followed 
the tradition established by Fechner (Falmagne, 
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1986). It is axiomatic, analytic, deterministic and, 
for the most part, theoretical. Its goal is to find mea-
surement systems capable of quantifying psycholog-
ical experience—to measure such experience. In the 
physical world, we measure objects frequently. We 
weigh ourselves, we compute distance, we mark 
time. Such physical quantities are based in extensive 
measurement, which requires the existence of a ratio 
scale (one with a true zero). We are so accustomed 
to making measurements of this sort that it seems 
natural to extend this kind of logic to psychological 
problems. However, the axioms of extensive mea-
surement may not be justified for the measurement 
of psychological experience (cf. Narens, 1996).

Foundational measurement represents the first 
and oldest approach to applying mathematical rea-
soning to psychological problems. In many ways, 
foundational measurement set the tone for mathe-
matical work in psychology, especially in psy-
chophysics and decision making. The pioneering 
research of Patrick Suppes and R. Duncan Luce is 
especially notable. Suppes, although officially a phi-
losopher, was perhaps the first, along with Dana 
Scott, to put a mathematical foundation under the 
psychological scales proposed by Stevens (1961; 
Scott & Suppes, 1958; Suppes & Zinnes, 1963).  
Luce brought the mathematics developed for foun-
dational measurement to bear on problems both in 
psychophysics and decision making, leading to 
some of the field’s most impressive contributions 
extending from the 1950s until the present day 
(Luce, 1959, 2004; Narens & Luce, 1986; Stein-
grimsson & Luce, 2005a, 2005b, 2006, 2007).

Psychophysics is amenable to a measurement 
approach because the physical quantity of interest  
is usually easy to measure (e.g., frequency of a  
tone) and there is a corresponding continuum of 
psychological experience (e.g., pitch). A fairly large 
body of beautiful mathematics has been developed 
to represent the psychological experience of magni-
tude in detection and discrimination tasks (e.g., 
Colonius & Dzhafarov, 2006; Falmagne, 1985; 
Krantz, Luce, Suppes, & Tversky, 1971; Luce, 
Krantz, Suppes, & Tversky, 1990; Suppes, Krantz, 
Luce, & Tversky, 1989).

For decision making, the goal of foundational 
measurement has been to derive scales of preference 

for objects on the basis of the frequency with which 
people choose one object over another. An axiom-
atic approach provides a basis for predicting what 
people should prefer in various circumstances.  
Violations of these predicted preferences point to 
incorrect axioms, which in turn leads to a greater 
understanding of how people make decisions. Tver-
sky and Kahneman’s work (e.g., Tversky & Kahne-
man, 1974, 1981) demonstrated above all that 
perfectly sensible axioms, such as those underlying 
expected utility theory, do not apply in many  
decision-making environments. Their work led to 
Kahneman’s Nobel prize in Economics in 2002.

Work in foundational measurement is generally 
deterministic, meaning that it deals primarily with 
the algebraic properties of different measurement 
systems. This fact means that, although mathemati-
cally quite elegant, measurement theories are often 
quite removed from empirical treatments and, 
indeed, may be difficult or impossible to empirically 
evaluate because the variability of real data obscure 
and distort the relationships predicted by the theo-
ries (Luce, 2005; Narens & Luce, 1993). Although 
there have been several promising inroads to formu-
lating stochastic approaches to foundational mea-
surement over the past decade or so (Falmagne, 
Reggenwetter, & Grofman, 1997; Heyer & Niederée, 
1989; Myung, Karabatsos, & Iverson, 2005), as yet 
there is no completely satisfactory solution.

cognitive Modeling
Mathematical approaches to modeling cognitive 
processes are now fairly well ingrained in main-
stream cognitive psychology. These approaches are 
equally balanced between analytic and computa-
tional models, but they are primarily stochastic and 
almost always empirical. It will not be possible for 
us to give a comprehensive treatment of every area 
in cognitive psychology for which mathematical 
modeling is important because this task would 
require many books. We focus on memory, categori-
zation, choice response time, and neural modeling.

Memory. Nowhere else in experimental psychol-
ogy has mathematical work had a greater impact 
than in the development of models for memory. 
Mathematical models of recognition and recall now 
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set the standard for theoretical developments in this 
area and have driven empirical research before them. 
Memory models no longer follow the early examples 
set by statistical learning theory and models of infor-
mation processing. It became obvious in the late 
1960s and early 1970s that the complexity of the 
process to be modeled was not adequately captured 
by linearly decomposing it into a sequence of sub-
tasks (e.g., Sternberg, 1966). This led to the devel-
opment of connectionist models (see below) and 
machine-learning-inspired models that incorporate 
learning, problem solving, and language comprehen-
sion (e.g., Dennis, 2005; Jilk, Lebiere, O’Reilly, & 
Anderson, 2008; Kintsch, McNamara, Dennis, & 
Landauer, 2007).

Signal-detection theory still plays a very impor-
tant role in most memory models. Older strength 
theories (Atkinson & Juola, 1973; Murdock, 1965; 
Parks, 1966) relied on the signal-detection frame-
work as the basis for the old–new judgment. Newer 
global memory models—such as those proposed by 
Murdock (1982), Hintzman (1988), and Gillund 
and Shiffrin (1984), and even more recent models 
such as retrieving effectively from memory (Shiffrin & 
Steyvers, 1997)—develop encoding, storage, and 
retrieval architectures explaining how memory 
traces are established, maintained, and decay over 
time as well as how different memory traces become 
associated with each other and to the context in 
which they were experienced. Each of these models 
requires, however, an evaluation of memory 
strength for a recognition decision, and this evalua-
tion is assumed to be performed within a signal-de-
tection framework.

Although global memory models go some way 
toward explaining how memory strength contrib-
utes to recognition performance, many researchers 
have explored the contributions of other memory 
processes, often lumped together under the term 
recall. In this sense, recall is the ability to remember 
specific details of the remembered item, and this 
ability requires conscious effort. In contrast, recog-
nition is based only on perceived strength, which 
happens effortlessly. Some memory work is focused 
on separating these different cognitive contributions 
to recognition decisions (e.g., Wixted, 2007). The 
receiver operating characteristic curve from signal 

detection is used to try and separate the signal- 
detection recognition component from the recall 
component. Dual-process memory theories thus 
combine the signal-detection approach with a less-
quantitatively specified recall component.

Another theoretical avenue to multiprocess 
memory models are the multinomial processing-tree 
models explored by Batchelder and Riefer (1999). 
This general approach provides a way to explore 
many different structures producing categorical 
measurements of behavior. The multinomial pro-
cessing tree model considers how different compo-
nents of a task depend on each other (e.g., if recall 
fails, evaluate familiarity) but does not explain the 
mechanisms by which each component operates. So 
whereas signal-detection theory might explain the 
probability that a subject calls an item old, the mul-
tinomial approach only assumes that such a proba-
bility exists. The approach allows for a consideration 
of different latent structures and comparisons 
between different model architectures. It has been 
applied to a wide range of problems, most recently 
in the evaluation of cognitive deficits (e.g., 
Batchelder & Riefer, 2007). It lends itself well to 
Bayesian analysis and is closely linked to measure-
ment problems in psychometrics (Batchelder, 2010).

categorization. Categorization tasks ask observ-
ers to classify stimuli according to their types. These 
types may be quite concrete (e.g., chairs, dogs, dis-
eases) or they may be very abstract. As in memory 
research, several influential mathematical models of 
categorization have set a standard for explanations 
of categorization behavior, and much of the empiri-
cal work in categorization over the past few decades 
has been driven by these models.

The first class of these models assumes that sub-
jects construct a mental representation of different 
categories and that categorization decisions are made 
on the basis of the psychological distances (often 
referred to as similarities) between a stimulus and 
other objects (exemplars) in the mental space (Nosof-
sky, 1988; Nosofsky & Palmeri, 1997). These models 
take much inspiration from early work in multidi-
mensional scaling (Torgerson, 1958), which was used 
to derive scales that could measure multidimensional 
stimuli and place them in relation to each other.
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The second class of these models assumes that 
categories of stimuli can be represented as probabil-
ity distributions in multidimensional space (Ashby, 
1992; Ashby & Gott, 1988). Categorization judg-
ments are made on the basis of a stimulus’s location 
in that space relative to multidimensional discrimi-
nant functions (lines, planes, hyperplanes) that 
divide the space into categories. These models are 
called decision-bound models, and they are closely 
related to signal-detection models. They preserve 
the ideas of discriminability, bias, optimality, and so 
forth from signal detection, but the interest is more 
on how different stimulus dimensions are perceived 
and how those perceptions influence the placement 
of decision bounds.

choice response time. Signal-detection theory 
also motivated most of the current, most successful 
mathematical models of simple choice, including 
Ratcliff’s diffusion model (e.g., Ratcliff & Smith, 
2004), Usher and McClelland’s (2001) leaky com-
peting accumulator model, the Poisson race model 
(Pike, 1973; Van Zandt, Colonius, & Proctor, 2000), 
Vickers’s accumulator model (Smith & Vickers, 
1988; Vickers, 1979), and (most recently) the lin-
ear ballistic accumulator (Brown & Heathcote, 
2008). These models address how simple choices 
are made in most cognitive experiments. The theory 
from which all these sequential sampling models 
derive is quite simple: To make a decision, an 
observer engages a process of information gather-
ing. Information is obtained by repeated sampling 
from the stimulus (if it is present) or from its mental 
representation (if it is not). Information is modeled 
as a continuum of sensory effect, and the stimulus 
representation from which information is sampled is 
provided by the signal-detection framework.

Each sample of information supports one of the 
two possible responses and is stored appropriately. 
The characteristics of this information (discrete or 
continuous), the time course of the sampling pro-
cess (discrete or continuous), and the nature of the 
storage mechanisms (separate as in a race model or 
combined as in a random walk or diffusion) define 
the differences between the sequential sampling 
models. The important contribution of these models 
is their explanation of the speed–accuracy trade-off, 

an explanation that pulls the dependent variables of 
response time and frequency together within the 
same mechanism. To make a decision requires 
enough information—a threshold. If a decision must 
be made quickly, it must be made on the basis of 
less information, which will lead to less accurate 
decisions.

Not only do these models explain changes in 
both response time and response frequency but also 
the stochastic processes upon which they are based 
are (usually) simple enough that we can write down 
analytic expressions for the response time distribu-
tions and the response probabilities as functions of 
the parameters of the process. These models pres-
ently stand as the most successful explanations of 
response selection in simple tasks. We have some 
neurophysiological evidence that the brain uses neu-
ral modules as information collectors (Schall, 2003), 
which has encouraged continued application of 
these models across cognitive, clinical, and develop-
mental psychology (Ratcliff, 2008; White, Ratcliff, 
Vasey, & McKoon, 2009).

In addition, these models are being brought to 
bear on classic problems in judgment and decision 
making (Busemeyer & Diederich, 2002; Merkle & 
Van Zandt, 2006; Pleskac & Busemeyer, 2010; Ratc-
liff & Starns, 2009; Van Zandt, 2000). In particular, 
the sequential sampling framework is being 
extended to judgments of confidence, leading to the 
simultaneous prediction of three dependent mea-
sures. This body of research, together with other 
models for judgment and decision making, has been 
named cognitive decision theory.

neural modeling. One development of the 1980s 
was the advent of computational models inspired by 
neural processing mechanisms: parallel-distributed 
processing (McClelland & Rumelhart, 1986; 
Rumelhart & McClelland, 1986). The computa-
tional tools provided by connectionism have been 
widely applied to complex cognitive problems, such 
as speech and pattern recognition (e.g., Norris & 
McQueen, 2008), and are used in engineering appli-
cations including computer vision, handwriting rec-
ognition, textual analysis, and quality control.

There was a backlash in the late 1980s against 
the use of connectionist models for cognition, a 
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backlash rooted in the argument that connectionist 
models were simply associationism (à la behavior-
ism) in disguise (Pinker & Mehler, 1988). Also, 
many cognitive psychologists argued that connec-
tionist models, although they may provide good 
explanations of how the brain performs computa-
tions, do not necessarily make predictions about 
overt behavior (Fodor & Pylyshyn, 1988). Conse-
quently, although neural modeling is an important 
and rapidly advancing enterprise, it does not look 
much like the cognitive connectionism of the early 
1980s.

To model the brain well requires a deeper under-
standing of neuroanatomy than most cognitive  
psychologists possess, a set of skills that might 
include animal laboratory work that cognitive psy-
chologists do not usually possess, and measuring 
devices (such as multiprobe electrode arrays and 
functional magnetic resonance imaging that were 
not available at the advent of connectionism. These 
deficiencies inspired new training programs 
designed to provide future researchers with these 
skills and to encourage collaboration between neu-
roscientists and behavioral scientists. There is now a 
huge body of research exploring neural models of 
cognition and brain function, models that are funda-
mentally quantitative in nature (e.g., Hasselmo, 
2009; Howard & Kahana, 2002; O’Reilly & Frank, 
2006), published in journals such as the Journal of 
Computational Neuroscience and Neural Computation.

At the time connectionist models became popu-
lar, there was a wave of enthusiasm for nonlinear 
dynamics as applied to problems in experimental 
psychology. This enthusiasm was driven not only by 
the obvious nonlinear dynamics of connectionist 
models, but also by ecological psychology, which is 
motivated by the idea that the human brain operates 
not only within the head but also within the envi-
ronment (Gibson, 1950). The complex interactions 
between neural modules and the ever-changing 
external world can be modeled with general systems 
theory (Klir, 1969).

General systems theory encompasses the mathe-
matics of catastrophe and chaos theory, which were 
the focus of much excitement and many symposia  
in the 1980s, but catastrophe and chaos theory 
never led to a revolution in mathematical cognitive 

modeling. The nonlinear dynamics approach, how-
ever, has led to an important bridge between mathe-
matical biology and cognitive science, and to the 
focus on complex systems in psychology repre-
sented by the important work of Turvey (1990, 
2009), Kelso (1995), and others (e.g., Large & 
Jones, 1999; Schmidt, Carello, & Turvey, 1990).

current issues in MatHeMatical 
Modeling

As mathematical psychology continues to mature, 
with the inevitable growing pains that process engen-
ders, there has been some navel-gazing about where 
the discipline is headed (Luce, 1999, 2005; Townsend, 
2008). In the heady 1950s and 1960s, mathematical 
psychology seemed the road toward a physical science 
of psychology, but perhaps the road did not go to the 
places the field’s founders anticipated it would. If true, 
there might be several reasons for this, one being that 
(of course) one’s children never grow up to become 
what one thought they would. Mathematical psychol-
ogy prospers, even though it hasn’t quite followed in 
its parents’ footsteps.

Mathematical psychology is currently tackling 
two major issues, and both are focused primarily on 
methodology: How to distinguish between different 
models of the same process, and constructing Bayes-
ian methods for the analysis of behavioral data. We 
discuss each of these before closing the chapter.

Model testing, evaluation, and 
comparisons
One very important area in mathematical psychology 
addresses the problem of how to discriminate 
between different models. This is a long-standing 
problem in any field that constructs mathematical 
and statistical models, including statistics, where this 
issue is dealt with by considering issues of goodness 
of fit, variance accounted for, information criteria, 
Bayes factors, and so forth. In addition, the possibil-
ity that models based on very different psychological 
principles or mechanisms might be mathematically 
similar or even identical, the challenge of model mim-
icking, can generate a formidable threat to the uncov-
ering of psychological laws. These and other 
important topics are outlined in this section.
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Mathematical psychologists have recently 
focused on the issue of model complexity. That is, 
one model may fit data better than another not 
because it is a better model but only because it is 
more complex. Complexity is not just a question of 
how many parameters a model has. Two models 
may have the same number of parameters yet one of 
them (the more complex one) may be able to 
accommodate a wider range of data patterns than 
the other. Dealing with this issue borrows ideas 
from computer science and has its roots in informa-
tion theory. Computer scientists have developed 
numerical techniques for quantifying complexity, 
opening the way for a different perspective on model 
selection. Pitt, Myung, and colleagues (Pitt, Kim, 
Navarro, & Myung, 2006; Pitt, Myung, Montenegro, &  
Pooley, 2008) are applying these techniques to a 
number of different problems, including the optimi-
zation of experimental designs for model testing and 
explorations of model parameter spaces.

Another method for model testing and selection 
is the powerful state-trace analysis methodology 
invented by Bamber (1979) and recently made pop-
ular by Dunn (2008). This technique is applied to 
problems for which the goal is to determine how 
many processes are contributing to the performance 
of a task (see the discussion of dual-process memory 
models). Many empirical pursuits try to answer the 
question of “how many processes” by looking for 
dissociations in patterns of data. That is, situations 
in which one experimental variable moves a depen-
dent variable in the opposite direction (or not at all) 
of another variable. This finding is sometimes called 
selective influence, and it is used to argue that one 
variable affects one process whereas another variable 
affects a different process independent from the first. 
State trace analysis is a simple technique based on 
minimal assumptions. In particular, no particular 
probability distributions, other mathematical func-
tions, or parameters are required. On the basis of 
this technique, Dunn and colleagues have argued 
that, in many situations, dissociations do not pro-
vide strong evidence for multiple processes (e.g., 
Dunn, 2004, 2008; Newell & Dunn, 2008).

Another approach to model testing uses the strong 
inference philosophy described by Platt (1964). The 
fundamental idea requires the scientist to set up a 

series of two or more juxtaposed hypotheses, rather 
than the more typical “there is a (predicted) effect” 
versus “there is no effect.” For example, we might 
first test whether a psychological phenomenon takes 
place within short-term versus long-term memory 
and then follow that with a test of whether the cod-
ing system in that memory is verbal or spatial. Or, we 
might formulate two or more entire classes of models 
that obey contrasting fundamental principles. The 
scientist first tests among these models and, in a sec-
ond stage of research, begins to test among more spe-
cific models within the winning class.

Research on serial versus parallel processing of 
elements in visual and memory search illustrates the 
challenges of model mimicking (e.g., Townsend, 
1972, 1974) as well as the opportunity for implemen-
tation of strong inference (e.g., Townsend, 1984). 
For instance, parallel and serial models can, for some 
popular experimental designs, produce exactly the 
same predictions and thus be totally indiscriminable 
(e.g., Townsend, 1972). However, Townsend and 
Wenger (2004) presented mathematical formulations 
for large classes of parallel and serial models, formu-
lations that highlight empirically distinguishable 
aspects of the different structures. They then use 
these class differences as assays to test the models. 
The strategies we mentioned earlier for identification 
of even more complex architectures (Schweickert, 
1978; Schweickert & Townsend, 1989) also adhere 
to this strategy. With these assays, juxtaposed mod-
els can be refined to be more and more specific so 
that, for example, if the assays suggest that process-
ing is parallel, then we might go on to test, say, a dif-
fusion process (e.g., Ratcliff, 1978) versus a counting 
mechanism (e.g., Smith & Van Zandt, 2000).

The issue of how to select among different math-
ematical models of a process will never be consid-
ered “solved” any more than the perfect statistical 
procedure for all circumstances will be discovered. 
As models change over the years, techniques for 
testing and selecting them will necessarily evolve.

the independent and identically 
distributed Problem and Bayesian 
Modeling
When subjects participate in a psychological experi-
ment, they are usually asked to make more than one 
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response. This is because one measurement does not 
allow the researcher to make inferences; intrinsic 
variability makes the measurement unreliable. A 
large number of responses from (usually) a large 
number of subjects across different conditions is 
collected to overcome this problem.

Although multiple observations solve the prob-
lem of statistical power, from a scientific perspec-
tive, they create another, entirely different problem. 
The measurement we obtain from a subject at one 
point in time is a function of all that has happened 
to that subject in the past. In particular, it is a func-
tion of the other measurements the subject has pro-
vided in our experiment. It is not possible to obtain 
repeated measurements under exactly the same con-
ditions, even if the stimulus conditions remain 
exactly the same from trial to trial.

Nonetheless, we treat our data as independent 
and identically distributed (IID) observations from 
the same data-generating mechanism. Often, we 
assume the data are IID even if the observations are 
coming from different subjects. We blithely average, 
combine and collapse, even knowing that such oper-
ations can distort the shape of any underlying func-
tion relating independent to dependent variables 
(Estes & Maddox, 2005).

This is the IID problem, and it is presently being 
tackled by the application of hierarchical Bayesian 
modeling techniques to established processing  
models (Craigmile, Peruggia, & Van Zandt, 2011; 
Lee, 2008; Peruggia, Van Zandt, & Chen, 2002; 
Rouder & Lu, 2005; Rouder, Lu, Speckman, Sun, & 
Jiang, 2005). As in most Bayesian analyses, the goal 
is to determine the posterior distribution of some 
model parameters given a specified prior distribu-
tion and the model itself (the likelihood). In a hier-
archical model, the parameters for each subject are 
assumed to be drawn from common hyperdistribu-
tions, so that the posterior hyperdistributions are 
informed by all the data from all the subjects. Thus, 
each subject’s data are fit in a way that allows for 
individual differences, but inferences about effects 
of independent variables are made on the hyperpa-
rameter posteriors, which have “learned” from all 
the subjects’ data combined.

Bayesian modeling has the potential to eliminate 
the problem of individual differences as well as 

order and other confounding effects (e.g., Craigmile 
et al., 2011), but it is a computationally difficult 
issue to address. There is currently a great deal of 
interest in treating response time data as time-series 
(e.g., Thornton & Gilden, 2005; Van Orden, 
Holden, & Turvey, 2005), an approach that recog-
nizes that repeated observations from a single sub-
ject are correlated. At this time, however, the 
techniques usually employed for such analyses, as 
well as the conclusions that result from them, can be 
criticized (Wagenmakers, Farrell, & Ratcliff, 2004).

conclusion

Modern mathematical psychology is a critical com-
ponent of modern experimental psychology. From 
its earliest inception, mathematical psychology has 
made important contributions to our understanding 
of learning, memory, perception, and choice behav-
ior; mathematical models continue to guide research 
in these areas as well as language acquisition and 
comprehension, problem solving, categorization, 
and judgment. Although modest in number, mathe-
matical psychologists appear as leaders in many psy-
chological disciplines, especially in cognition and 
neuroscience. They have been elected to the most 
esteemed societies in experimental psychology as 
well as the elite National Academy of Sciences. Sev-
eral mathematical psychologists (Herbert Simon, 
Patrick Suppes, William K. Estes, and R. Duncan 
Luce) have received the highest scientific honor in 
the United States, that of receiving the National 
Medal of Science.

As experimental psychology matures, it is likely 
that our current definition for what constitutes 
mathematical psychology will change. Eventually, 
we hope, experimental psychologists will all use 
mathematical reasoning and develop mathematical 
models, and thus everyone will be mathematical 
psychologists under the definition we have pro-
vided in this chapter. However, just as there remain 
specifically mathematical subdisciplines in the phys-
ical and life sciences (e.g., physics, chemistry, and 
biology), we anticipate that mathematical psychol-
ogy will endure as a unique endeavor among the  
different subdisciplines that make up the science  
of psychology.
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